Boundary conditions and phase transitions in neural networks. Simulation results

نویسندگان

  • Jacques Demongeot
  • Sylvain Sené
چکیده

This paper gives new simulation results on the asymptotic behaviour of theoretical neural networks on Z and Z(2) following an extended Hopfield law. It specifically focuses on the influence of fixed boundary conditions on such networks. First, we will generalise the theoretical results already obtained for attractive networks in one dimension to more complicated neural networks. Then, we will focus on two-dimensional neural networks. Theoretical results have already been found for the nearest neighbours Ising model in 2D with translation-invariant local isotropic interactions. We will detail what happens for this kind of interaction in neural networks and we will also focus on more complicated interactions, i.e., interactions that are not local, neither isotropic, nor translation-invariant. For all these kinds of interactions, we will show that fixed boundary conditions have significant impacts on the asymptotic behaviour of such networks. These impacts result in the emergence of phase transitions whose geometric shape will be numerically characterised.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary conditions and phase transitions in neural networks. Theoretical results

The purpose of this paper is to present some relevant theoretical results on the asymptotic behaviour of finite neural networks (on lattices) when they are subjected to fixed boundary conditions. This work focuses on two different topics of interest from the biological point of view. First, it exhibits a link between the possible updating iteration modes in these networks, whatever the number o...

متن کامل

Prediction of Pressure Drop of Al2O3-Water Nanofluid in Flat Tubes Using CFD and Artificial Neural Networks

In the present study, Computational Fluid Dynamics (CFD) techniques and Artificial Neural Networks (ANN) are used to predict the pressure drop value (Δp ) of Al2O3-water nanofluid in flat tubes. Δp  is predicted taking into account five input variables: tube flattening (H), inlet volumetric flow rate (Qi  ), wall heat flux (qnw  ), nanoparticle volume fraction (Φ) and nanoparticle diameter (dp ...

متن کامل

Phase transitions and self-organized criticality in networks of stochastic spiking neurons

Phase transitions and critical behavior are crucial issues both in theoretical and experimental neuroscience. We report analytic and computational results about phase transitions and self-organized criticality (SOC) in networks with general stochastic neurons. The stochastic neuron has a firing probability given by a smooth monotonic function Φ(V) of the membrane potential V, rather than a shar...

متن کامل

An Algorithm based on Predicting the Interface in Phase Change Materials

Phase change materials are substances that absorb and release thermal energy during the process of melting and freezing. This characteristic makes phase change material (PCM)  a favourite choice to integrate it in buildings. Stephan problem including melting and solidification in PMC materials is an practical problem in many engineering processes. The position of the moving boundary, its veloci...

متن کامل

Artificial neural network models for production of nano-grained structure in AISI 304L stainless steel by predicting thermo-mechanical parameters

An artificial neural network (ANN) model is developed for the analysis, simulation, and prediction of the austenite reversion in the thermo-mechanical treatment of 304L austenitic stainless steel. The results of the ANN model are in good agreement with the experimental data. The model is used to predict an appropriate annealing condition for austenite reversion through the martensite to austeni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 21 7  شماره 

صفحات  -

تاریخ انتشار 2008